GCE

Chemistry A

Advanced GCE F324

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Allow Kekulé structures throughout

Question

Question

Question		Expected Answers	Marks	Additional Guidance
b	b	$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$	1	ALLOW any order of elements ALLOW $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{4} \rightarrow \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$ or $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{4}=\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$
	ii	$\mathrm{HO}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}$ Penalise incorrect bond linkage in 2b(ii) only. Do not penalise elsewhere on the paper	2	ALLOW $\mathrm{COOH} / \mathrm{CO}_{2} \mathrm{H}$ ALLOW ALLOW HO(CH2 $)_{2} \mathrm{OH}$
	c i		2	ALLOW any of the following for 1 mark ${ }^{+} \mathrm{Na}$ or or DO NOT ALLOW any other response
	ii	(PGA is) (bio)degradable OR photodegradable OR hydrolysed (but hydrocarbon based polymers are nonbiodegradable) \vee One of (bio)degradable OR photodegradable OR hydrolysed must be spelt correctly - if one spelt correctly and another incorrectly spelt - ALLOW mark	1	ALLOW broken down by bacteria (must be spelt correctly) ALLOW degrade as alternative to degradable ALLOW undergoes hydrolysis as alternative to hydrolysed IGNORE any additional information if the additional information is correct e.g. biodegradable and doesn't produce toxic gases DO NOT ALLOW any additional information if the additional information is incorrect e.g. biodegradable and can be recycled
		Total	9	

Quest		Expected	Answers	Marks	Additional Guidance
C		Alternative approaches not the aldeh Doublet indicates adjacent C is bonded to only 1 H OR (relative) peak area indicates $2 \times \mathrm{CH}_{3}$ (in the same environment) If aldehyde is correct $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CHO}$ If aldehyde is correct only need to explain doublet OR peak areas	depending on whether or yde is correct Doublet indicates adjacent C is bonded to only $1 \mathrm{H} \checkmark$ AND (relative) peak area indicates $2 \times \mathrm{CH}_{3}$ (in the same environment) If aldehyde identified is incorrect \mathbf{x} if aldehyde is incorrect must explain both doublet or peak areas		ALLOW 3-methylbutanal, any correct unambiguous structure ALLOW two marks for correct aldehyde with no explanation ALLOW doublet/peak at 0.9 ppm due to $\mathrm{R}-\mathrm{CH}$ ALLOW the splitting shows adjacent to $\mathrm{CH} /$ environment that contains 1 H/proton ALLOW $6 \mathrm{Hs} /$ protons in same environment DO NOT ALLOW 6 Hs in same environment next to CHO e.g. would score two marks if the doublet and the peak areas were correctly explained
d	i	 ketone 3		1	ALLOW displayed/skeletal formulae
	ii	There are 4 (different C) en (therefore) it is ketone 21 (C responsible for peak at C=O/carbonyl carbon	ronments $=210 \mathrm{ppm})$ is	3	ALLOW 2 Cs are in same environment/equivalent ALLOW 3-methylbutan(-2-)one/ any correct unambiguous structure ALLOW 2-methylbutan-3-one ALLOW
			Total	12	

Question			Expected Answers	Marks	Additional Guidance
4	a	i	The time (from the injection of the sample) for the component to leave the column	1	ALLOW time from injection to detection ALLOW time spent in column ALLOW time taken to reach detector
		ii	They have similar retention times \checkmark	1	ALLOW both are esters therefore partition/adsorption/retention times will be very similar ALLOW ECF if they describe R_{f} values in part a(i) ALLOW same retention times
		iii	Butylbutanoate \checkmark	1	ALLOW butyl butanoate ALLOW but-1-yl butanoate DO NOT ALLOW butanyl butanoate
	b	i		2	ALLOW any correct unambiguous structure/ $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CHCHCHCHCOOCH} \mathrm{CH}_{3} /$ $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CHCHCHCHCOOC} 2 \mathrm{H}_{5}$ $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4}(\mathrm{CH})_{4} \mathrm{COOCH}_{2} \mathrm{CH}_{3}$ DO NOT ALLOW $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{CHCHCHCHCOOCH}_{2} \mathrm{CH}_{3}$ etc ALLOW CO_{2} for ester ALLOW 1 mark for correct 2,4-decadiene structure e.g. ALLOW 1 mark for correct ethyl ... oate structure e.g.

Question

Question			Expected Answers	Marks	Additional Guidance
5	a	I		1	ALLOW * in place of circle ALLOW if circle extends to include OH
		ii	Mark 1 - production of a single isomer is more expensive/difficult OR separation of the single isomer is expensive/difficult \checkmark Mark 2 - one of the isomers is more (pharmacologically) active or one of the isomers might have adverse/harmful/nasty side effects Marks 3 and 4 - problems are overcome by using: Enzymes/bacteria/biological catalyst Chiral synthesis Chiral catalyst or transition metal complex Start with a natural chiral molecule or chiral pool any	4	IGNORE any reference to dosage ALLOW one is more effective/works (better) DO NOT ALLOW use naturally occurring isomer unless stated that it is a chiral compound DO NOT ALLOW transition metal ion DO NOT ALLOW pool synthesis Chiral pool synthesis scores 1 (not 2) marks
	b	i		1	 ALLOW epoxy ethane as $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O},\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}$, $\mathrm{CH}_{2} \mathrm{OCH}_{2}$ ALLOW product as $\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}_{2}$ DO NOT ALLOW product as $\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{NO}$
		ii	$\mathrm{HO}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH} \quad \checkmark$	1	ALLOW $\left(\mathrm{CH}_{2}\right)_{2}$ ALLOW displayed/skeletal formula DO NOT ALLOW molecular formula

Question			Expected Answers	Marks	Additional Guidance
	c	i	$\mathrm{HO}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{3}{ }^{+} \mathrm{Cl}^{-}$ Must show Cl^{-}ion	1	ALLOW HOCH $\mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3} \mathrm{Cl}$ if formula is correct and both charges not shown ALLOW $\left(\mathrm{CH}_{2}\right)_{2}$ / any correct unambiguous structure DO NOT ALLOW ions joined by covalent bonds
		ii	$\mathrm{HO}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{3}^{+} \mathrm{HS}^{-}$ Must show HS^{-}ion	1	ALLOW if formula is correct and both charges not shown ALLOW $\left(\mathrm{CH}_{2}\right)_{2}$ / any correct unambiguous structure ALLOW $\left(\mathrm{HO}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{3}^{+}\right)_{2} \mathrm{~S}^{2-}$
	d	i	Both NH_{2} and COOH are joined to the same $\mathrm{C} \checkmark$	1	ALLOW The 4 groups/atoms attached to the C can be in any order but CH must be adjacent. () not essential
		ii		1	ALLOW $\left(\mathrm{CH}_{2}\right)_{2}$ DO NOT ALLOW molecular formula
	e	i	Question $5 e$ is followed by two blank lined pages (15 and 16) which ca Please check to see whether or not pages $\mathbf{1 5}$ or $\mathbf{1 6}$ have been used	didat	can use instead of requesting additional paper.

Question		Expected Answers		Marks	Additional Guidance
e	i	Isomer F Isomer G		2	ALLOW HO(CH2 $)_{4} \mathrm{NH}_{2} /$ ALLOW any correct unambiguous structure of 1-aminobutan-4-ol ALLOW CH $\mathrm{CH}_{3}(\mathrm{OH}) \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CH}_{3}$ ALLOW any correct unambiguous structure of 2-aminobutan-3-ol.
			Total	13	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

